Reducibility proofs in λ-calculi with intersection types

Fairouz Kamareddine, Vincent Rahli and J. B. Wells

ULTRA group, MACS, Heriot Watt University

25 March 2008
By using reducibility, new, simple and general methods can be developed to prove properties of the λ-calculus.

In our paper:
- We review and find the flaws in one reducibility method of proofs of Church-Rosser, standardisation and weak head normalisation.
- We review, adapt and non trivially extend another reducibility method of proofs of Church-Rosser.
The Two Reducibility Methods

1. Ghilezan and Likavec’s method:
 ➤ According to this method, a certain property of the λ-calculus is proved to hold, if that property satisfies a certain set of predicates.
 ➤ Unfortunately, this method does not work. We give counterexamples.

2. Koletsos and Stavrinos’s method:
 ➤ This method aims to prove the Church-Rosser property of the untyped λ-calculus by showing first that a typed λ-calculus is confluent and using this to show the confluence of developments.
 ➤ We adapt this method to βI-reduction.
 ➤ We extend (this is non trivial) this method to $\beta \eta$-reduction.
Ghilezan and Likavec’s Method [GL02]

Ghilezan and Likavec designed a general proof method schema.

The basic step of the method: if a set of λ-terms \mathcal{P} satisfies a defined set of predicates pred then it contains a certain set of typable λ-terms T.

\[\text{pred}(\mathcal{P}) \Rightarrow T \subseteq \mathcal{P} \]

Extension of the basic step: if a set of λ-terms \mathcal{P} satisfies a defined set of predicates pred then it contains the whole set of λ-terms.

\[\text{pred}(\mathcal{P}) \Rightarrow \Lambda = \mathcal{P} \]
Below, \mathcal{P} is a set of terms. Using:

- a set of types $\sigma \in \text{Type}^1 := \alpha | \sigma_1 \rightarrow \sigma_2 | \sigma_1 \cap \sigma_2$,
- a type interpretation function $\lbrack - \rbrack^1_\mathcal{P}$ which depends on \mathcal{P} and
- a set of predicates pred which depends on type interpretations and consists of:
 - Variable predicate: each variable belongs to each type interpretation.
 - Saturation predicate (1): the contractum of a β-redex is in a type interpretation \Rightarrow the β-redex is in the type interpretation.
 - Closure predicate (1): a term applied to a variable is in a type interpretation \Rightarrow the term is in the set of terms given as parameter.

Ghilezan and Likavec claim that $\text{pred}(\mathcal{P}) \Rightarrow \text{SN} \subseteq \mathcal{P}$.

(where $\text{SN} = \{ M | \text{each reduction from } M \text{ is finite} \} = \text{set of } \lambda\text{-terms typable in } D$).
Recall that \mathcal{P} is a set of terms. Using:

- a set of types $\tau \in \text{Type}^2 ::= \alpha \mid \tau_1 \rightarrow \tau_2 \mid \tau_1 \cap \tau_2 \mid \Omega$,
- a type interpretation depending on \mathcal{P},
- a set of predicates pred which depends on type interpretations and consists of:
 - Variable predicate: same as before.
 - Saturation predicate (2): similar to before.
 - Closure predicate (2): a term is in a type interpretation \Rightarrow the abstraction of the term is in \mathcal{P}.
- an intersection type system (with omega and subtyping rule),

Ghilezan and Likavec prove that $\text{pred}(\mathcal{P}) \Rightarrow T \subseteq \mathcal{P}$

where T is a set of typable terms under some restriction on types.
Ghilezan and Likavec’s method [GL02]
full method- basic step continued

▶ It is not easy to prove \(\text{pred}(P) \). Hence, [GL02] introduces:
 ➢ stronger induction hypotheses. These are new predicates collected in a set newpred.
 ➢ These new predicates do not deal with type interpretation

▶ newpred(CR) where
\[
\text{CR} = \{M \mid M \rightarrow^* M_1 \land M \rightarrow^* M_2 \Rightarrow \exists M'. M_1 \rightarrow^*_\beta M' \land M_2 \rightarrow^*_\beta M' \}
\]

▶ newpred(W) where
\[
\text{W} = \{M \mid \exists n \in \mathbb{N}. \exists x \in V. \exists M, M_1, \ldots, M_n \in \Lambda. (M \rightarrow^*_\beta \lambda x.M \lor M \rightarrow^*_\beta xM_1 \ldots M_n) \}
\]

▶ newpred(S) where
\[
\text{S} = \{M \mid M \rightarrow^*_\beta M' \Rightarrow \exists N. M \rightarrow^*_h N \land N \rightarrow^*_i M' \} (\rightarrow^*_h \text{ for head-reduction and } \rightarrow^*_i \text{ for internal-reduction})
\]
The final step of the method is to prove
\[\text{newpred}(\mathcal{P}) \land \text{Inv}(\mathcal{P}) \Rightarrow \Lambda = \mathcal{P} \]
where \(\Lambda \) is the set of all the \(\lambda \)-terms and
\textbf{Invariance predicate Inv:}
If \(M \in \Lambda \) then \(\lambda x. M \in \mathcal{P} \iff M \in \mathcal{P} \).

The authors give a set \(T \) of \(\lambda \)-terms that are typable in their type system with a type satisfying the necessary restrictions.

This final step is done in two parts:

- Let \(M \in \Lambda \). Then:
 - \(\lambda x. M \in T \)
 - \(\text{newpred}(\mathcal{P}) \Rightarrow \lambda x. M \in \mathcal{P} \)
 - \(\text{newpred}(\mathcal{P}) \land \text{Inv}(\mathcal{P}) \Rightarrow M \in \mathcal{P} \)
- \(\text{Inv(CR)} \) and \(\text{Inv(S)} \).
Ghilezan and Likavec’s method fails

Counterexample

- Our paper lists in detail the problems with a number of lemmas and proofs in [GL02].
- Here, we show one counterexample:

Claim [GL02]

\[
\text{INV}(\mathcal{P}) \land \text{VAR}(\mathcal{P}) \land \text{SAT}(\mathcal{P}) \Rightarrow \Lambda = \mathcal{P}.
\]

Counter-example: INV(WN), VAR(WN) and SAT(WN) are true, but WN \neq \Lambda.
Ghilezan and Likavec’s method [GL02]

summary

First step:

\[\text{pred1}(\mathcal{P}) \Rightarrow T \subseteq \mathcal{P}. \]

(where \(T \) is a set of typable terms in a given type system)

Full method (false):

\[\text{pred2}(\mathcal{P}) \Rightarrow \Lambda = \mathcal{P}. \]

We tried to salvage the full method of Ghilezan and Likavec, but we failed. We did not go further than the basic step with \(T = \text{SN} \), which is a result Ghilezan and Likavec already proved.

Some similar proof methods have already been, as far as we know, successfully developed (for example by Gallier [Gal03]). However, they do not go further than the basic step and do not deal with Church-Rosser. Such methods can help in characterising typable terms w.r.t. a type system.
Koletsos and Stavrinos’s method [KS08]
the outlines of their method
Koletsos and Stavrinos’s method [KS08] proves Church Rosser of β-reduction.

We extend Koletsos and Stavrinos’s method to prove Church Rosser of $\beta\eta$-reduction.

$$\text{CRBE} = \{ M \mid M \rightarrow^*_{\beta\eta} M_1 \land M \rightarrow^*_{\beta\eta} M_2 \Rightarrow \exists M'. M_1 \rightarrow^*_{\beta\eta} M' \land M_2 \rightarrow^*_{\beta\eta} M' \}$$

Using:
- a set of types,
- a type system,
- a type interpretation based on CRBE and
- a language typable in the type system,

we prove that each term in the defined language is in CRBE.
What is this new language? The parametrised language $\Lambda \eta_c \subseteq \Lambda$ is defined as follows:

1. If x is a variable distinct from c then
 - $x \in \Lambda \eta_c$.
 - If $M \in \Lambda \eta_c$ then $\lambda x. (M[x := c(cx)]) \in \Lambda \eta_c$.
 - If $N x \in \Lambda \eta_c$, $x \notin \text{fv}(N)$ and $N \neq c$ then $\lambda x. N x \in \Lambda \eta_c$.

2. If $M, N \in \Lambda \eta_c$ then $cMN \in \Lambda \eta_c$.

3. If $M, N \in \Lambda \eta_c$ and M is a λ-abstraction then $MN \in \Lambda \eta_c$.

4. If $M \in \Lambda \eta_c$ then $cM \in \Lambda \eta_c$.
An Extension of Koletsos and Stavrinos’s method [KS08]
a bit a technicality

\[p \in \text{Path} ::= 0 \mid 1.p \mid 2.p. \]

We define \(M|_p \) as follows:

- \(M|_0 = M \)
- \((\lambda x.M)|_{1.p} = M|_p \)
- \((MN)|_{1.p} = M|_p \)
- \((MN)|_{2.p} = N|_p \).

Example: \((\lambda x.zx)|_{1.2.0} = (zx)|_{2.0} = x|_0 = x. \)
An Extension of Koletsos and Stavrinos’s method [KS08]
a bit a technicality

Let us define the three following common relations:

- $\beta ::= \langle (\lambda x. M) N, M[x := N] \rangle$
- $\eta ::= \langle \lambda x. M x, M \rangle$, where $x \not\in \text{FV}(M)$
- $\beta\eta = \beta \cup \eta$

Let $r \in \{\beta, \eta, \beta\eta\}$

$R^r = \{L \mid \langle L, R \rangle \in r\}$ and $R^r_M = \{p \mid M|_p \in R^r\}$

Example: $R^\beta_{(\lambda x. y x)y} = \{0, 1.0\}$.

We define the ternary relation \rightarrow_r as follows:

- $M \xrightarrow{0}_r M'$ if $\langle M, M' \rangle \in r$
- $\lambda x. M \xrightarrow{1,.p}_r \lambda x. M'$ if $M \xrightarrow{p}_r M'$
- $MN \xrightarrow{1,.p}_r M'N$ if $M \xrightarrow{p}_r M'$
- $NM \xrightarrow{2,.p}_r NM'$ if $M \xrightarrow{p}_r M'$
- $M \xrightarrow{p}_r M'$ if there exists p such that $M \xrightarrow{p}_r M'$.

Example: $(\lambda x. x)y \xrightarrow{0}_\beta y \Rightarrow \lambda y.(\lambda x. x)y \xrightarrow{1.0}_\beta \lambda y. y$.

An Extension of Koletsos and Stavrinos’s method [KS08]

a bit a technicality - An erasure function

Erasure on terms:

▶ \(|x|^c = x\)
▶ \(|\lambda x.N|^c = \lambda x.|N|^c, \text{ if } x \neq c\)
▶ \(|cP|^c = |P|^c\)
▶ \(|NP|^c = |N|^c|P|^c, \text{ if } N \neq c\)

Example: \(|(c(\lambda x.yx))y|^c = (\lambda x.yx)y\).

Erasure on paths:

▶ \(|\langle M, 0 \rangle|^c = 0\)
▶ \(|\langle \lambda x.M, 1.p \rangle|^c = 1.|\langle M, p \rangle|^c, \text{ if } x \neq c\)
▶ \(|\langle MN, 1.p \rangle|^c = 1.|\langle M, p \rangle|^c\)
▶ \(|\langle cM, 2.p \rangle|^c = |\langle M, p \rangle|^c\)
▶ \(|\langle NM, 2.p \rangle|^c = 2.|\langle M, p \rangle|^c, \text{ if } N \neq c\)

Example: \(|\langle (c(\lambda x.yx))y, 1.2.0 \rangle|^c = 1.0\).
An Extension of Koletsos and Stavrinos’s method [KS08]
a bit a technicality - a function from $\Lambda \times 2^{\text{Path}}$ to $2^{\Lambda \eta}$

Let $c \not\in \text{fv}(M)$ and $F \subseteq R^\beta_\eta_M$.

1. If $M \in V \setminus \{c\}$ then $F = \emptyset$ and
 \[
 \Psi^c(M, F) = \{c^n(M) \mid n > 0\}
 \]
 \[
 \Psi^c_0(M, F) = \{M\}
 \]

2. If $M = \lambda x.N$ and $x \neq c$ and $F' = \{p \mid 1.p \in F\} \subseteq R^\beta_\eta_N$ then:
 \[
 \Psi^c(M, F) =
 \begin{cases}
 \{c^n(\lambda x.P[x := c(cx)]) \mid n \geq 0 \land P \in \Psi^c(N, F')\} & \text{if } 0 \not\in F \\
 \{c^n(\lambda x.N') \mid n \geq 0 \land N' \in \Psi^c_0(N, F')\} & \text{otherwise}
 \end{cases}
 \]
 \[
 \Psi^c_0(M, F) =
 \begin{cases}
 \{\lambda x.N'[x := c(cx)] \mid N' \in \Psi^c(N, F')\} & \text{if } 0 \not\in F \\
 \{\lambda x.N' \mid N' \in \Psi^c_0(N, F')\} & \text{otherwise}
 \end{cases}
 \]

3. If $M = NP$, $F_1 = \{p \mid 1.p \in F\} \subseteq R^\beta_\eta_N$ and $F_2 = \{p \mid 2.p \in F\} \subseteq R^\beta_\eta_P$ then:
 \[
 \Psi^c(M, F) =
 \begin{cases}
 \{c^n(cN'P') \mid n \geq 0 \land N' \in \Psi^c(N, F_1) \land P' \in \Psi^c(P, F_2)\} & \text{if } 0 \not\in F \\
 \{c^n(N'P') \mid n \geq 0 \land N' \in \Psi^c_0(N, F_1) \land P' \in \Psi^c(P, F_2)\} & \text{otherwise}
 \end{cases}
 \]
 \[
 \Psi^c_0(M, F) =
 \begin{cases}
 \{cN'P' \mid N' \in \Psi^c(N, F_1) \land P' \in \Psi^c_0(P, F_2)\} & \text{if } 0 \not\in F \\
 \{N'P' \mid N' \in \Psi^c_0(N, F_1) \land P' \in \Psi^c_0(P, F_2)\} & \text{otherwise}
 \end{cases}
 \]
Example:

\[
\Psi^c((\lambda x.(\lambda y.M)x)N, \{1, 1.0, 1.1.0\}) = \\
\{c^n((\lambda x.(\lambda y.P[y := c(cy)])x)Q) \mid n \geq 0 \land P \in \Psi^c(M, \emptyset) \land Q \in \Psi^c(N, \emptyset)\} \subseteq \Lambda \eta_c,
\]

where \(x \notin \text{fv}(\lambda y.M)\).

Let \(p = 1.0\) then \((\lambda x.(\lambda y.M)x)N \overrightarrow{\beta \eta} (\lambda y.M)N\).

Let \(n \geq 0, P \in \Psi^c(M, \emptyset), Q \in \Psi^c(N, \emptyset)\) and \(p' = 2.0 \ldots 2.1.0\). Then:

- \(P_0 = c^n((\lambda x.(\lambda y.P[y := c(cy)])x)Q) \overrightarrow{\beta \eta} c^n((\lambda y.P[y := c(cy)])Q)\)
- \(|\langle P_0, p' \rangle|^c = |\langle P_0, 2^n.1.0 \rangle|^c = p\)
- \(c^n((\lambda y.P[y := c(cy)])Q) \in \Psi^c((\lambda y.M)N, \{0\})\)
An Extension of Koletsos and Stavrinos’s method [KS08]

$\beta\eta$-developments

Let $c \notin \text{fv}(M)$ and $\mathcal{F} \subseteq \mathcal{R}_M^{\beta\eta}$.

- Let $p \in \mathcal{F}$ and $M \xrightarrow{p}_{\beta\eta} M'$. We call the unique $\mathcal{F}' \subseteq \mathcal{R}_{M'}^{\beta\eta}$, such that for all $N \in \Psi^c(M, \mathcal{F})$ there exist $N' \in \Psi^c(M', \mathcal{F}')$ and $p' \in \mathcal{R}_{N}^{\beta\eta}$ such that $N \xrightarrow{p'}_{\beta\eta} N'$ and $|\langle N, p' \rangle|^c = p$, the set of $\beta\eta$-residuals of \mathcal{F} in M' relative to p.

- A one-step $\beta\eta$-development of $\langle M, \mathcal{F} \rangle$, denoted $\langle M, \mathcal{F} \rangle \rightarrow_{\beta\eta d} \langle M', \mathcal{F}' \rangle$, is a $\beta\eta$-reduction $M \xrightarrow{p}_{\beta\eta} M'$ where $p \in \mathcal{F}$ and \mathcal{F}' is the set of $\beta\eta$-residuals of \mathcal{F} in M' relative to p. A $\beta\eta$-development is the transitive closure of a one-step $\beta\eta$-development. We write $M \rightarrow_1 M'$ for the $\beta\eta$-development $\langle M, \mathcal{F} \rangle \rightarrow^{*}_{\beta\eta d} \langle M', \mathcal{F}' \rangle$.

Lemma

If $c \notin \text{fv}(M)$, $M \rightarrow_1 M_1$ and $M \rightarrow_1 M_2$ then there exists M' such that $M_1 \rightarrow_1 M_3$ and $M_2 \rightarrow_1 M_3$.
The transitive reflexive closure of $\rightarrow_{\beta \eta}$ is equal to the transitive reflexive closure of \rightarrow_1. We are now able to prove the (non-strict) inclusion of Λ in CRBE and the equality between these sets:

Lemma

$c \notin \text{fv}(M) \Rightarrow M \in \text{CRBE}$.
J. Gallier.
Typing untyped λ-terms, or reducibility strikes again!.

S. Ghilezan and S. Likavec.
Reducibility: A ubiquitous method in lambda calculus with
intersection types.

G. Koletsos and G. Stavrinos.
Church-Rosser property and intersection types.
To appear.