Comparing Calculi of Explicit Substitutions with Eta-reduction

Mauricio Ayala Rincón, Flávio Leonardo Cavalcanti de Moura
Departamento de Matemática
Universidade de Brasília
Brasília - Brasil.

Fairouz Kamareddine
Mathematical and Computer Science
Heriot-Watt University
Edinburgh, Scotland.
Summary

1. λ-calculus and Explicit Substitutions Calculi.

2. The *Eta* rule for the Suspension Calculus.

3. Adequacy: Comparing $\lambda\sigma$, λ_{se} and λ_{SUSP}.

4. Conclusions and Future Work.
1. \(\lambda\)-calculus and Explicit Substitutions Calculi

1.1. \(\lambda\)-calculus.

Application: \((M \; N)\)

Abstraction: \(\lambda x. M\)

\((\beta)\) \(\frac{}{(\lambda x. M) \; N} \rightarrow M \{N/x\}\)

\((\eta)\) \(\frac{}{\lambda x. (M \; x) \rightarrow M \text{ if } x \not\in \text{FV}(M)}\)

Terms

\[M, N ::= n | x | \lambda M | (M \; N) \]
1.2. Explicit Substitutions Calculi

Variations of the λ-calculus that manipulate explicitly the substitution operation.

Desireable properties:

(a) Simulation of the β-reduction.
(b) Termination or Strong Normalization (SN).
(c) Confluence (CR): ground terms and open terms.
(d) Preservation of Termination (PSN).
2.1. $\lambda\sigma$-calculus.

The first calculus of explicit substitutions.

Terms

$$ M, N ::= 1 \mid \lambda \mid \lambda M \mid (M \ N) \mid M[S] $$

Substitutions

$$ S, T ::= \text{id} \mid \uparrow \mid M.S \mid S \circ T $$
2.2. λs_e-calculus

- Extension of the λs (Kamareddine and Ríos, 1995).
- Remains closer to the syntactical structure of the λ-calculus.

Terms

$$M, N ::= n | \mathcal{X} | \lambda M | (M N) | M\sigma^i N | \varphi^i_k M$$

where $k \geq 0$ and $i \geq 1$.
2.3. **Suspension Calculus**
Nadathur and Wilson, 1998.

Motivation: Implementational questions related with \(\lambda\)-Prolog that uses typed \(\lambda\)-terms as data structure.

Suspended terms
\[
M, N ::= n | \lambda M | (M N) | \langle M, i, j, e_1 \rangle
\]

Environments
\[
e_1, e_2 ::= nil | et :: e_1 | \{e_1, i, j, e_2\}
\]

Environment Terms
\[
et ::= @i | (M, i) | \langle et, i, j, e_1 \rangle
\]
<table>
<thead>
<tr>
<th>Properties</th>
<th>$\lambda\sigma$</th>
<th>λ_{se}</th>
<th>Susp. Calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation of β-reduction</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Termination of substitution</td>
<td>yes</td>
<td>?</td>
<td>yes for WF</td>
</tr>
<tr>
<td>Confluence</td>
<td>M_{ν}</td>
<td>yes</td>
<td>yes for WF</td>
</tr>
<tr>
<td>PSN</td>
<td>No</td>
<td>No</td>
<td>?</td>
</tr>
</tbody>
</table>

M_{ν} : Confluence on semi-open expressions, i.e., only with meta-variables of terms.

WF : Well-formed terms.
2. The \textit{Eta} rule for the Suspension Calculus.
(λ_{Susp})

\[
(Eta_{\text{SUSP}}) \ (\lambda \ (t_1 \ 1)) \rightarrow t_2, \quad \text{if} \quad t_1 =_{rm} \ [t_2, 0, 1, nil]
\]

Figura 1: The \textit{Eta} rule for the λ_{Susp}

\begin{prop}[Soundness of the \textit{Eta} rule]
Every application of the \textit{Eta} rule of λ_{Susp} to the redex $\lambda(t_1 \ 1)$ gives effectively the term t_2 obtained from t_1 by decrementing all its de Bruijn free indices by one.
\end{prop}
Lemma 4.3 [susp plus \(Eta \) is SN]
\(\text{SUSP} \cup \{ Eta \} \) is terminating.

Lemma 4.5 [Local-confluence of susp plus \(Eta \)]
\(\text{SUSP} \cup \{ Eta \} \) is locally-confluent.

Theorem 4.6 [Confluence of susp plus \(Eta \)]
\(\text{SUSP} \cup \{ Eta \} \) is confluent.
3. Comparing the Adequacy of the Calculi

Definition 5.1 (Adequacy) \(\lambda \xi_1 \prec \lambda \xi_2 \) if,

- \(\forall a \rightarrow_\beta b \)
 \(\forall a \rightarrow_\lambda^{\xi_2} b \iff \exists a \rightarrow_\lambda^{\xi_1} b \) such that \(m \leq n \);

- \(\exists a \rightarrow_\beta b \)
 \(\exists a \rightarrow_\lambda^{\xi_1} b \) such that \(\forall a \rightarrow_\lambda^{\xi_2} b \) we have \(m < n \).

If neither \(\lambda \xi_1 \prec \lambda \xi_2 \) nor \(\lambda \xi_2 \prec \lambda \xi_1 \), then we say that \(\lambda \xi_1 \) and \(\lambda \xi_2 \) are *non comparable*.
Proposition 5.2 The $\lambda\sigma$- and the λ{s}_e-calculi are non-comparable.

Proposition 5.6 The $\lambda\sigma$- and λ_{susp}-calculi are non-comparable.
Proposition 5.11 Every \textit{SUSP}-derivation of

$$[[A, k, k - 1, \mathtt{\@} k - 2 :: \ldots :: \mathtt{\@} 0 :: (B, l) :: \text{nil}]]$$

where $A, B \in \Lambda$ and $k \geq 0$ to its \textit{SUSP}-nf has length greater than or equal to $Q_k(A, B)$.

Proposition 5.12 Let $A, B \in \Lambda$ and $k \geq 1$. Every \textit{se}-derivation of $A\sigma^kB$ to its \textit{se}-nf has length less than or equal to $Q_k(A, B)$.
For the second condition in the definition of adequacy, consider β-conversion: $(\lambda 2) \ 1 \rightarrow \beta 1$

$\lambda_{SUSP}: (\lambda 2) \ 1 \rightarrow \ [2, 1, 0, (1, 0) :: nil] \rightarrow \ [1, 0, 0, nil] \rightarrow 1$

$\lambda_{S_e}: (\lambda 2) \ 1 \rightarrow \ 2\sigma^1 1 \rightarrow 1$

or a more complex example: $(\lambda 3 3)(\lambda 2 3) \rightarrow \beta \lambda^4 5$ which have a unique simulation in λ_{S_e} with 7 steps against 11 steps in a unique simulation in the λ_{SUSP}.

Theorem 5.13 $[\lambda_{S_e} \prec \lambda_{SUSP}]$ The λ_{S_e}- is more adequate than the λ_{SUSP}-calculus.
Definition 5.14 [Efficiency] $\lambda x_1 \ll \lambda x_2$ if,

$$\forall a \rightarrow_\beta b,$$

$$\forall a \rightarrow^m_{\lambda x_1} b \text{ and } \forall a \rightarrow^n_{\lambda x_2} b \implies m \leq n;$$

Proposition 5.15 [\(\lambda x_e \ll \lambda x_{\text{susp}}\)] The λx_e-calculus is more efficient than the λx_{susp}-calculus.
Compare the simulations of β-reduction from the term $(\lambda(\lambda^n i))_j$, where $n \geq 0$:

$$(\lambda(\lambda^n i))_j \rightarrow$$

$$(\lambda(\lambda^n i))_j \rightarrow$$
Compare the simulations of β-reduction from the term
\[(\lambda(\lambda^n i)) _ j, \text{ where } n \geq 0:\]
\[(\lambda(\lambda^n i)) _ j \rightarrow \]
\[(\lambda^n i)\sigma^1 j \rightarrow^n\]

\[(\lambda(\lambda^n i)) _ j \rightarrow \]
\|[_ \lambda^n i, 1, 0, (j, 0) :: nil] \rightarrow^n\]
Compare the simulations of β-reduction from the term $(\lambda(\lambda^ni))\ j$, where $n \geq 0$:

$$(\lambda(\lambda^ni))\ j \rightarrow$$

$$(\lambda^n i)^{\sigma^1 j} \rightarrow^n$$

$$\lambda^n (i^{\sigma^{n+1} j}) =: t_1$$

$$(\lambda(\lambda^ni))\ j \rightarrow$$

$$[\lambda^n i, 1, 0, (j, 0) :: nil] \rightarrow^n$$

$$\lambda^n [i, n + 1, n, @n - 1 :: \ldots :: @0 :: (j, 0) :: nil] =: t_2$$
After that the λs_{e} completes the simulation in one or two steps by checking arithmetic inequations:

$$t_1 \rightarrow \begin{cases}
\lambda^n \underline{i}, & \text{if } i < n + 1 \\
\lambda^n \underline{i - 1}, & \text{if } i > n + 1 \\
\lambda^n (\varphi_0^{n+1} j) \rightarrow \lambda^n \underline{j + n}, & \text{if } i = n + 1
\end{cases}$$

But in the λ_{susp} we have to destruct the environment list, environment by environment:

$$t_2 \begin{cases}
\rightarrow^{i-1} \lambda^n \underline{[1, n - i + 2, n, @n - i : \ldots : @0 :: (j, 0) :: nil]} \rightarrow \lambda^n \underline{i}, & \text{if } i < n + 1 \\
\rightarrow^{n+1} \lambda^n \underline{[i - n - 1, 0, n, nil]} \rightarrow \lambda^n \underline{i - 1}, & \text{if } i > n + 1 \\
\rightarrow^{i-1} \lambda^n \underline{[1, 1, n, (j, 0) :: nil]} \rightarrow \lambda^n \underline{[j, 0, n, nil]} \rightarrow \lambda^n \underline{j + n}, & \text{if } i = n + 1
\end{cases}$$

- Enlarged Suspension Calculus with an adequate Eta-rule (Soundness, Termination and Confluence).

- $\lambda\sigma$ and λ_{Se} are non comparable.

- $\lambda\sigma$ and λ_{SUSP} are non comparable.

- λ_{Se} is more efficient than λ_{SUSP}.
5. Further Work.

⇒ An implementation of the 3 Explicit Substitution Calculi with Eta-reduction (Ocaml)

Group of Theory of Computation
Universidade de Brasília
http://www.mat.unb.br/~ayala/TCgroup

The Useful Logics, Types, Rewriting and Applications (ULTRA)
http://www.cee.hw.ac.uk/ultra
6. Future Work.

- Is λ_{SUSP} PSN?
- Is s_e-calculus terminating?
Main references

